ISPF Panels — Advanced

g’ SHARE 117

nnnnnnnnnnnnnnnnnnnnnnnn

© 2011 IBM Corporation

Interactive Program Development Facility (ISPF)

Agenda

=Action Bars and Pull-Down Choices
=Point-and-Shoot Fields
=Scrollable Areas
=Dynamic Areas
=Scrollable Fields
=Panel Logic

 Functions, Other Statements
=Panel REXX
=DTL - Dialog Tag Language
=References

NOTE: A basic knowledge of ISPF

panel processing is assumed. &

2 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

This presentation looks at a number of the more advanced features of ISPF
panels, including:

*Action Bar and Pull-Down Choices

*Point and Shoot fields

*Dynamic areas

*Scrollable areas

*Scrollable fields

*Advanced panel logic

*Panel REXX

This session also provides a brief overview of the benefits of using Dialog Tag
Language (DTL) to develop ISPF panels.

NOTE: This session assumes you have a basic knowledge of ISPF panel
processing.

Interactive Program Development Facility (ISPF)

Action Bars and Pull-Down Choices

Action Bar Choices

) ar \g t ~
Action Bar Languages Colors Help
_ 1. Restart Application Color Settings
Pull-Down g. gefaultdﬂél_iettings
] . Save and Exi
Choices i Cancet
More: +
Language: 15 1. Automatic Coloring: 1 1. Do not color program
2. Assembler 2. Color program
3. BookMaster 3. Both IF and DO logic
4. C 4. DO logic only
5. COBOL 5. IF logic only
6. IDL
7. ISPF DTL Enter "/" to select option
8. ISPF Panel Parentheses matching
9. ISPF Skeleton / Highlight FIND strings
10. JCL / Highlight cursor phrase
11. Pascal
12. PL/I Note: Information from this panel is
13. RERX saved in the edit profile.
14. SuperC
15. Other
3 ‘ ISPF Panels - Advanced | Session 9764 © 2011 I1BM Corporation

Action Bars and Pull-Downs Choices support Common User Access (CUA)
guidelines. The CUA guidelines define a user interface in terms of common
elements, such as the way information appears on a screen, and interaction
techniques, such as the way users respond to what appears on a screen.

The Action Bar is the area at the top of an application panel that contains action
bar choices for the panel.

Pull-Down Choices represents a group of related choices that appear in the pull-
down associated with the action bar choice.

When the user selects an action bar choice, the associated pull-down appears
directly below the action bar choice.

Pull-Downs contain choices that, when selected by the user, perform actions that
apply to the contents of the panel.

In the example shown, the File action bar choice has been selected.

Interactive Program Development Facility (ISPF)

Action Bars and Pull-Down Choices

=Panel definition describes each action bar and pull-down choices

=Panel language supports 3 Action Bar sections:

)JABC DESC(...) Defines action names and response
)JABCINIT Allows setup before pulldown display
JABCPROC Allows setup after action selection

=)ABC DESC(...) and)ABCINIT are required
=)ABCINIT must set .ZVARS to a unique name

=Action Bar must be added to the)BODY section

4 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

A panel defines action bars and pulldown choices using the JABC, JABCINIT, and
JABCPROC panel sections.

JABC DESC(...) - This section is specified after the)ATTR section. It defines the
text of the action bar choice, the location of the mnemonic character (the
underscored bit), the action names and responses. This is done with keywords
and statements:

*DESC(...) - text of action bar choice. This must match the text in the)BODY
section.

*PDC DESC(...) - each pull-down choice is identified by the PDC statement.
*ACTION RUN(...) - defines command to be run when this choice is selected.
Must be 2-8 characters in length.

)JABCINIT - Allows setup before the pull-down display. This allows alteration of the
text of the action. For example you may want to verify that some conditions are
met and make the text of an action state that the choice is unavailable. Within the
)JABCINIT section, you must assign a value to .ZVARS of a unique name, even if
you do not use the name for anything else. This is to allow ISPF to create a field
on the action bar which will contain the name of the action.

JABCPROC - Allows setup after action selection. This section is not required and
is only needed in special cases (e.g. verification of the pull-down entry field).

Interactive Program Development Facility (ISPF)

Action Bars and Pull-Down Choices

=When an action is selected ISPF sets the command line from the ACTION
RUN(...) statement and simulates an ENTER key.
) ABC desc(File)
PDC DESC(' Restart Application')
ACTI ON RUN(RESTART)
PDC DESC(' Default All Settings')
ACTI ON' RUN(RESET)
PDC DESC(' Save and Exit')
ACTI ON' RUN(END)
PDC DESC(' Cancel ')
ACTI ON' RUN(CANCEL)
YABCINI T
. ZVARS = FI LEX

=Action can be handled by:
+ Command Table
« Program logic
« Panel logic

5 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

This example of an JABC section has 4 actions, defined by the PDC (pull down
choice) statement. Each PDC has an ACTION statement which tells ISPF what
action to take when the pull-down choice is selected.

When a pull-down choice is selected, ISPF takes the value of the ACTION
RUN(...) statement (the part in the RUN() section) and logically places it on the
command line and simulates an Enter key. This allows the processing to be
handled by the command table, program logic, or panel logic.

You can use the ISRROUTE command to invoke the ISPF SELECT service
(ISRROUTE is a command defined in the ISPF command table ISPCMDS).

e.g. ACTI ON RUN(| SRROUTE) PARM ' SELECT PGM USERLI ST)
NEWAPPL(USR) ')

You can use the PARM keyword to pass parameters.

For example, you can specify ACTION RUN(CANCEL) and have the ISPF
command table handle the CANCEL command. Or you could say ACTION
RUN(XYZ) and have your panel logic and/or program handle the XYZ command
(assuming it is not in the active command table).

NOTE: The JABCINIT section must contain a .ZVARS control variable assignment
statement to associate a variable name with the pull-down entry field.

Interactive Program Development Facility (ISPF)

Action Bars and Pull-Down Choices

=)ATTR section - define attribute types for AB, ABSL

) ATTR
$ TYPE(AB) /* action bar */
@TYPE(ABSL) /* action bar sep. line */

=Define)ABC sections with DESC() keyword

) ABC desc(Menu)

PDC DESC(' Save') ACTI ON RUN(SAVE)
< additional logic here >

) ABCINI T

.zvars = ' MENUX

) ABC desc(Hel p)

< additional logic here >

6 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

To create an action bar on a panel, you need to:
1. Add at least the TYPE(AB) to the)ATTR section.

2. Add)ABC and)ABCINIT sections to describe the action bar choices.

Remember to:
*set the DESC value in)ABC to the corresponding text in the) BODY section

eassign .ZVARS in the)ABCINIT section

Notes:
*The "additional logic here" shown in the example refers to other pull-down
choices, not processing logic.

«In the example the TYPE(ABSL) attribute character is used to define the action
bar separator line.

Interactive Program Development Facility (ISPF)

Action Bars and Pull-Down Choices

=)BODY section - define action bar & separator line at top

) BODY
+$ Menu $ Help +

=Use names in action bar as you want them to appear

=Choice names must match value in the JABC DESC()

7 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

3. Add an action bar to the panel using an AB attribute character ($) for each pull
down. After the attribute, place the name of the pull-down from the description in
the)JABC section.

Notes:
sthere must be a blank between the AB attribute and the text.

the '+' attribute character represents normal text.
4. Add an action bar separator line (optional).

Program or panel logic, or entries in a command table are required to process the
action bar selections.

Interactive Program Development Facility (ISPF)

Action Bars and Pull-Down Choices - Example

) ATTR

. TYPE(PT) /* Panel title /
% TYPE(ET) /* Enphasi zed text /
+ TYPE(NT) /* Normal text */
_ TYPE(NEF) /* Normal entry field /
$ TYPE(AB) /* Action bar /

/

*
@TYPE(ABSL) /* Action bar separator line *
) ABC desc(Menu)

PDC DESC(' Save') ACTI ON RUN(SAVE)

PDC DESC(* End') ACTI ON RUN(END)

PDC DESC(' Cancel ') ACTI ON RUN(CANCEL)
)ABOINIT

.zvars = ' MENUX

) ABC DESC(Hel p)

PDC DESC(' Ext ended Hel p...")

ACTI ON RUN(HELP)
=
. ZVARS = HELPX
.RESP = ENTER /* Don't even show choice */
I* This is an exanple and */
/* is NOT CUA. . */
) BODY W NDOW 48, 6)
+$ Menu $ Help +

@<= +
. Panel Title
Y%e==>_7ZOND +
+This is normal text. Right?_ANS+ (Yes, No)
) END
8 ‘ ISPF Panels - Advanced | Session 9764 © 2011 I1BM Corporation

This is a working example of a panel which will appear in a window (if an
ADDPORP is issued). It has 2 pull-downs, Menu and Help. It shows the use of
some CUA attributes (e.g. TYPE(NEF)), overriding the defaults (&, +, and _) and
it shows an example of adding processing to the JABCINIT section for the Help
pulldown.

If the Help pull-down is selected, ISPF will automatically simulate an extra enter
key because of the .RESP=ENTER in the JABCINIT section. Thus the pull-down
will never be shown and since the default is for ISPF to select the first pull-down
choice when just the enter key is pressed and the pull-down is selected for the 1st
time, ISPF will run the HELP command and will never actually show the pull-
down.

This is a method you can use to have action bar choices automatically take some
action.

Interactive Program Development Facility (ISPF)

Action Bars and Pull-Down Choices - Example

The panel looks like this when displayed:

Menu Help
Panel Title
===>
This is normal text Right? ___ (Yes, No)
F1=HELP F2=SPLIT F3=END

When 'Menu' is selected, a pulldown is shown:

Help
1. Save anel Title
2. End
3. Cancel | xt Right? (Yes, No)
F2=SPLIT F3=END
o ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Shown here is the format of the panel when initially displayed and when the Menu
choice from the action bar is selected.

Interactive Program Development Facility (ISPF)

Point-and-Shoot Fields

=Point-and-shoot fields are fields with an associated action that results when the
ENTER key is pressed with the cursor on the field

=Define attribute
* PAS(ON|OFF) - Input and output fields
* TYPE(PS) - Text

=Define FIELD entries in)PNTS section
» FIELD(field_name|ZPSxxyyy) VAR(variable) VAL(value)
—field_name is the corresponding point-and-shoot field
—xx: 00 if field in)BODY section; 01-99 for JAREA number in which field is
defined
—yyy: 001-999 for relative position of field within)BODY or JAREA
—variable is set to value when point-and-shoot field is selected

=Dialog should take an action based on the value in the variable

10 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Point-and-Shoot fields are areas of a panel that cause an action to take place

1.

when the cursor is placed on the area and the ENTER key is pressed. To
create a Point-and-Shoot field you need to:

In the)ATTR section, define the attribute byte used for point-and-shoot
input/output fields and text
* PAS(ON|OFF) — defines the attribute byte for input and output point-
and-shoot field. It is not a CUA type, therefore, it can have the color,
intensity, and highlight changed.
* TYPE(PS) — defines the attribute byte for point-and-shoot text. It is a
CUA type, so it does not allow color, intensity, and highlight changes.

For each panel field defined with a point-and-shoot attribute, there must be a
corresponding FIELD entry in the)PNTS section. If there is no corresponding
entry in the)PNTS section no action is taken when the field is selected. The
)PNTS section is specified after the) BODY and)AREA sections. The name
specified in the FIELD statement is field_name for input/output fields, and
ZPSxxyyy for text fields. When a point-and-shoot field is selected, ISPF sets
variable to value. The dialog should take an appropriate action based on the
value found in variable.

‘ Interactive Program Development Facility (ISPF)

Point-and-Shoot Fields - Example

TATTR

| S~

% R;SEE ﬁ)c’ +— Panel Definition Rexx Driver
+ TYPE(PS)

$ TYPE(OUTPUT) CAPS(OFF) PAS(ON) REXX */
) BODY W NDOW(50, 6) SS ' | SPEXEC
% " ADDPCP"

10 +Settings odernminal and user paraneters% ' DI SPLAY PANEL(PSFI ELDS)"

1 +View %i spl ay source data or " REMPOP"

listings% i f zsel -='?" then do

12 +Edit % eate or change source data% "SELECT " zsel

lend
$EXI TPB%

YINT
&WNTTL = ' Poi nt-and- Shoot Fi el ds' E
&EXITPB = "Exit'
) PROC
SZOVDWRK = &Z Panel Display

&ZTRAI L=. TRAI L ——— Point-and-5hoot Fields

IF (&ZCVDVWRK = &2)
. MG = | SRU00
8ZSEL = TRANS (TRUNC (&ZQMD,".") D Settings Terminal and user parameters
0," PGV | SPI SV SCRNAVE(SETTI NGS)* - i TR
1. PGV | SRBRO) PARM | SRBROD1) SCRNAVE(VI EW' 1 View Pisplay source data or listings
2,' PGMI SREDIT) PARM P, | SREDMD1) 2 Edit Create or change source data
SCRNAME(EDI T)*
)
) PNTS Exit
FI ELD(ZPS00001) VAR(ZCMD) VAL(0) Pl
FI ELD{ ZPS00002) VAR(ZCMD) VAL(1)
FI ELD{ ZPS00003) VAR(ZCMD) VAL(2)
;::EEED(EXI TPB) VAR(ZCMD) VAL(EXIT) Point-and-Shoot Fields
11 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

This is a working example of point-and-shoot fields on a selection panel displayed
in a popup panel. The menu options "Settings", "View" and "Edit" have the PS
attribute. When the cursor is placed on the text with a PS attribute and Enter is
pressed, the corresponding value specified in the)PNTS section is assigned to
the ZCMD variable. Logic in the)PROC section of the panel then causes the
appropriate action to be taken.

The variable EXITPB is assigned to an output point-and-shoot field by using the $
attribute character which has PAS(ON) specified. When the cursor is placed on
this field the value EXIT is assigned to the variable ZCMD.

Interactive Program Development Facility (ISPF)

)BODY - Scrollable Areas

=Scrollable areas allow the application developer to define a portion of the
panel that ISPF manages for scrolling

=A scrollable area can be thought of as a hole in a panel through which
another panel may be viewed:

=There may be multiple scrollable areas on one panel.
« When there are, scrolling is cursor sensitive.

12 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

ISPF allows a section of an ISPF panel to be defined as a scrollable area. A
scrollable area can be thought of as a window (or “hole”) in a panel through which
a larger section of data may be viewed. ISPF handles any requests by the user to
scroll the data.

ISPF supports multiple scrollable area on one ISPF panel, in which case scrolling
is cursor sensitive.

Interactive Program Development Facility (ISPF)

Defining a Scrollable Area
=Creating a scrollable area requires three actions:
« Define the attribute character for the scrollable area
« Define the "hole" in the)BODY section where the scrollable area
appears using the scrollable area attribute character
« Define the area to be displayed in the "hole" in the)AREA section
=The name on the first attribute defines the name of the scrollable area.

It must match the name of the area on the JAREA section.

=|SPF references scrollable areas from left to right, top to bottom:

Area l Area 2

Area 3

13 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Defining a scrollable area requires 3 actions:
1. Define the attribute character for the scrollable area

2. Define the “hole” in the)BODY section using the attribute character to delimit
the area

3. Define the format of the area to be displayed in the hole - This is the) AREA
section

The name specified after the first attribute byte of the scrollable area (in the
)BODY section) is the NAME of the area and corresponds with the name
specified on the JAREA section.

ISPF references scrollable area from left to right, top to bottom.

Interactive Program Development Facility (ISPF)

Defining a Scrollable Area

=Define the attribute character for the scrollable area:
$ AREA(SCRL) EXTEND(ON| OFF)

*EXTEND(ON) specifies that the depth of an area can be automatically
increased, if required, so that the depth of the entire body of the panel
matches the depth of the physical screen on which it is being displayed.

=Only one extendable area can be specified in a panel definition

=The value for EXTEND cannot be specified as a dialog variable

14 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

The attribute byte for a scrollable area is defined with AREA(SCRL), and
optionally EXTEND(ON|OFF). This character is used to define the borders of the
scrollable area in the)BODY section.

EXTEND(ON) specifies that the depth of the AREA automatically increases to the
physical screen size. There can only be ONE extendable area on a panel and the
value for the EXTEND option cannot be a dialog variable.

Interactive Program Development Facility (ISPF)

Defining a Scrollable Area

=Define the "hole" in the) BODY section where the scrollable area appears
using the scrollable area attribute character
« Bound the area with the attribute character
« Specify the area name immediately after the first attribute character
« The top line of the scrollable area is reserved for the Mre: -+
indicator that ISPF automatically displays
* Minimum width is 20 characters, minimum depth is 2 lines

) BODY

Yo--m-nmnn-- Panel Tile ----------

+===>_ZCMD +
+Static Data +

$SCRL1 $
$ $ +Static
$ $ +Data
$ $
15 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

The area that we want to define as a scrollable area is bound with the attribute
character ($ was defined as the attribute character for the scrollable area on the
previous page).

The name of the scrollable area (in this example it is SCRL1), is specified
immediately after the first attribute character for the scrollable area.

Notes:
*The first line of the scrollable area is reserved for the indicator: MORE: - +

*The minimum size of a scrollable area is 20 characters by 2 lines.

Interactive Program Development Facility (ISPF)

Defining a Scrollable Area . . .

=Define the area to be displayed in the "hole" in the JAREA section
« Anything that can be put in a) BODY section can be put in an)JAREA

section except:
—Action bar lines
—Graphics area
—)MODEL section
—Command line
—Alternate message locations
—Another scrollable area
—Dynamic area using EXTEND(ON)
or SCROLL(ON)

*The DEPTH(d) parameter may be used to specify the minimum number
of lines in the scrollable area when EXTEND(ON) is specified.

ISPF Panels - Advanced | Session 9764

) AREA SCRL1

+Here you can have +
+field pronpts, etc. +
+Enter A:_VARA +

+ B: _VARB +

+

+The Sum &SUVAB
Di fference: ! Dl FAB
+ Pr oduct : ! PRODAB

© 2011 IBM Corporation

The)AREA section defines the format of the data displayed in the associated

scrollable area.

Interactive Program Development Facility (ISPF)

)BODY - Dynamic Areas

=What can | do with dynamic areas?

« Dynamically built panels
—Simple text
—Input and output
—Full color control
—Fields anywhere
» Dynamic parts of panels
— ISPF calendar is an example
- Better 'table displays'
—Field level colors and input states
« Full cursor control
=Program controls everything in all or part of the)BODY section

 Text contents and locations
* Input field contents and locations
« Text attributes (color and highlighting)

ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

ISPF allows a section of an ISPF panel to be defined as a dynamic area. Dynamic
areas can contain:
*Simple Text

eInput fields, and

*Output fields.

The Calendar on the ISPF primary menu is and example of a dynamic area.
Dynamic area could be used for a "better” table display, as is the case with the
ISPF data set list (option 3.4).

It is the application program that controls EVERYTHING within the Dynamic area,
including:

*Text and where it is located

eInput fields and where they are located (and how long)

*Text attributes (including color and highlighting)

Interactive Program Development Facility (ISPF)

What is a Dynamic Area?

=Area set aside in the)BODY section of the panel
=Controlled by an ISPF variable called a ‘dynamic area variable'
=Application Program:

 Sets up the dynamic area variable

« Displays the panel

 Evaluates changes to the variable(s)
« handle scrolling requests

18 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

A Dynamic Area is an area set aside in the)BODY section of a panel and is
controlled by an ISPF variable (called a dynamic area variable). The value of the
dynamic area variable defines the data displayed in the dynamic area.

It is the responsibility of the application program displaying the panel with the
dynamic area to:
*Set up the dynamic area variable

*Display the panel

*Evaluate changes to the data within the dynamic area and then update any ISPF
variables

*Handle any requests to scroll the dynamic area (UP, DOWN, TOP, BOTTOM)

Interactive Program Development Facility (ISPF)

The Dynamic Area Variable

=Long string of characters
=Contains all lines to be shown in the dynamic area

- Data wraps on screen to create multiple lines
=Contains all attributes, text, and space for input fields

« Attributes are defined in the)ATTR section by using
~TYPE (DATAOUT)
~TYPE (DATAIN)

19 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

A dynamic area can be thought of as a long string of characters that wraps to
create the multiple lines within the area. The string of characters contains the
attribute characters, text, and input/output fields. Attributes are defined in the
)ATTR section using TYPE(DATAOUT) and TYPE(DATAIN) options.

Interactive Program Development Facility (ISPF)

Dynamic Area - Attributes

=The attribute section)ATTR defines all attributes used in the dynamic
area

« Attributes are reserved characters given special meaning
—Examples:
% TYPE(DATAOUT) COLOR(YELLOW | NTENS(HI GH)
_ TYPE(DATAIN) COLOR(Pl NK)
= JATTR section also defines a character to delimit the dynamic area:

@ AREA(DYNAM C) EXTEND(OFF)
@ AREA(DYNAM C) EXTEND(ON)

ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

From the example above, the % attribute character identifies in the dynamic area
an output/text area that will be yellow and high intensity. The _ (underscore)
attribute character is used for an input field that is pink.

An attribute character is also required to define the dynamic area within the
)BODY section. The examples above use the @ attribute character to define
where in the)BODY section the dynamic area is located. Like scrollable areas,
dynamic areas can be defined with either EXTEND(ON) or EXTEND(OFF).

Interactive Program Development Facility (ISPF)

Dynamic Area - Shadow Variables

=Provide color on a character by character basis
 ISPF Edit Highlight is a good example

=Required for graphic escape sequences in dynamic areas
» Used to make pretty boxes and diagrams

=A second variable that maps the dynamic area
=Byte for byte correlation to the dynamic area variable

=Uses the TYPE(CHAR) attribute from the)ATTR section

21 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Defining a shadow variable for a Dynamic Area allows the dynamic area to be
colored on a character by character basis (eg: ISPF Edit highlighting). A shadow
variable is also required to generate graphic escape sequences in dynamic area
for generating boxes and diagrams.

The shadow variable is another dialog variable that maps the dynamic area byte
for byte. The TYPE(CHAR) attribute in the)ATTR section is used to define
attributes used in the shadow variable.

Interactive Program Development Facility (ISPF)

Shadow Variable - Example
) ATTR DEFAULT(%)

TYPE(CHAR) will not @ AREA(DYNAM C) SCROLL(OFF)
conflict with characters in ——— v TYPE(CHAR) COLOR(YELLOW Hi LI TE(USCORE)
the dynamic variable) BODY
Y%------- Panel Title --------
%Command ===>_ZCMD +
¥
+ Sone static text
+ @YNVAR, SHADVAR @
Shadow variable maps JINNT
dynamic area variable byte< &DYNVAR = ' Your Underline'
for byte &SHADVAR= 'Y Y '
yt
) END

Panel Title
Command ===> _

22 ‘ ISPF Panels - Advanced | Session 9764 © 2011 I1BM Corporation

Here is a simple example showing how a dynamic area can be defined.

The @ attribute byte is used to identify the location of the dynamic area. It is non-
extendable and non-scrollable.

The Y attribute character defines the character that will be used in the shadow
variable value to display data in the dynamic area as yellow and underlined.

The dynamic area variable name is DYNVAR. The shadow variable name is
SHADVAR.

The)INIT section of the panel contains logic to set values for the variables
DYNVAR and SHADVAR. Note that the position of the Y characters in the value
for SHADVAR cause the uppercase Y and U in the dynamic area to be displayed
as yellow and underlined.

Interactive Program Development Facility (ISPF)

)BODY - Scrollable Fields

=Support for Scrollable field new in z/OS 1.5 (ISPF 5.5)

=Allow display of data larger than the panel field size

» maximum field length is 32K

=New)FIELD section used to define fields that are scrollable

=LEFT, RIGHT and (new) ZEXPAND primary commands change display of
scrollable fields

23 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Scrollable Fields is a feature of ISPF added with z/OS 1.5. It was also made
available to z/OS 1.2 and later via APAR OW57368 (PTF UA02839).

A scrollable field allows the display of dialog variables that are larger than the field
on an ISPF panel. In fact the maximum data length supported for a scrollable field
is 32K.

A new)FIELD section is used to define a field that is scrollable. The LEFT and
RIGHT commands are used to scroll the data displayed in a scrollable field. The
new ZEXPAND command displays the data from a scrollable field in a popup
window.

Interactive Program Development Facility (ISPF)

Scrollable Fields

=Defining the)FIELD section
) FI ELD

Identify scrollable panel field
Length of displayed variable Fl ELD(field- nama) 4/
Left I indi [LEN(val ue| field- name)] Left & right scroll indicator
\(.
eft scroll in |caor\ [IND(field-nane, val ue)]
Separator scroll indicator [LIND(field-nane, val ue)] Right scroll indicator

[RIND(fi el d-nane, val ue)] <
[SIND(fi el d-nane, val ue

Right column position indicator [LCG_(field- nama)]

Scroll control switch [RCOL(fi el d-nane)]

[SCALE(fi el d- name)]

[SCROLL(val ue| fiel d-nane)]

Left column position indicator

Scale indicator

24 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

The Syntax of the)FIELD section is shown here. Options are provided to allow
the association of other variables with the scrollable field for:

«field length

*LEFT/RIGHT Scroll indicators (defaults: - +)

*Separator lines (default: <- >)

Left and Right displayed column values

*Scale lines - - - - - R e Tt ST SN
*Scroll control - ON or OFF

Interactive Program Development Facility (ISPF)

Scrollable Fields - Example
) ATTR
| TYPE(OUTPUT) CAPS(OFF) JUST(ASIS)
_ TYPE(INPUT) CAPS(COFF) JUST(ASIS) FORVAT(M X)

) BODY

% ----- Left/Right Scroll Panel ------
YOPTION ===>_ZCMD

+ Field Val ue
el

+ Val ue :_LR1 +

+ Scroll Indicator :|lrlin
+ Left & Right Slril |Irir
+ Left/Right cols :_Lrilf _lrari
+ Length :_lriln
+ Scal e t|lrisc +
+ Separat or lrisp +
) FI ELD

Fi el d(LR1)

Ind(lrlin,'<>")
Lind(lril,"<") Rind(lrir,'>")
Lecol (Ir1lf) Recol (Irlri)
Len(!r 1l n)

Scal e(1r1sc)

Sind(lrisp)

) END

25 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Shown here is the source of a panel demonstrating the use of scrollable fields.
The panel has a single scrollable field for variable LR1. The panel also displays
fields for the following variables associated with current state of the scrollable
field. These associations are established through the)FIELD section definition.
*L R1IN — scroll indicator with value ‘<>’

*LRIL & LRIR — Left and Right scroll indicators with values ‘< and >’

*LR1LF & LR1RI — Left and Right column values

*LR1LN - Field data length

*LR1SC — Scale line

*LR1SP — separator line

Interactive Program Development Facility (ISPF)

Scrollable Fields - Example

=Scrollable field showing first 12
characters of a 36 byte field, plus
associated indicator, column, length,
scale and separator fields

—————— Left/Ri ght Scroll Panel ------
OPTION ===>

abcdef ghi j ki
& =Position cursor on value and scroll

right. Display updated as shown

below

Left/Ri ght Scroll Panel
___________ OPTI ON ===>

mopqr st uvwx
« note: Left / Right columns, and Length
fields are input fields.
—modifying these fields will also alter
the display

26 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Shown here are examples of the panel display with some suitable data. The
variable LR1 is 36 characters longs initialized with the 26 letters of the alphabet
followed by 0-9. Initially the display shows the first 12 characters (abcdefghijkl)
and only the RIGHT scroll indicators (as we are at the maximum LEFT position). If
we position the cursor over the value and scroll RIGHT, the display is updated to
show the next 12 characters, both the LEFT and RIGHT scroll indicators are
shown and the separator line indicates we can scroll both directions, and the
left/right column values are updated. Also the scale line is updated to reflect the

current position.

Interactive Program Development Facility (ISPF)

Panel Logic - 'Other' Statements

* PANEXIT
—provides a user exit to extend the panel language
* REFRESH
—Provides a means to refresh specified panel fields before a panel
redisplay
—Valid for)REINIT and)PROC sections
REFRESH(FLDL1)

* TOG
—Alternate the value of a variable between 2 values
TOG (S, FLDL, &/ARL, '0','1")
* VGET/VPUT
—Copy variables from/to the shared or application profile variable pool

VGET (FLDL, FLD2)
VPUT (FLDL, FLD2) PROFI LE

27 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Here are some 'other' panel logic statements, not covered during the Dialog
Developers Boot Camp.
*PANEXIT - used to define a panel exit - we will look at this shortly

*REFRESH - refreshes 1 or more panel fields before a redisplay of a panel

*TOG - toggle between 2 values if the data in FLD1 is
modified
*VGET/VPUT - Copy a dialog variable from/to the shared or

application profile pool

There are other statements, not shown here, and not often used
*VEDIT

*EXIT
*GOTO

Interactive Program Development Facility (ISPF)

Panel Logic - Functions

« TRANS()
—~Translates
&VAL = TRANS(&VARL Y, YES N, NO *, *)

* TRUNC()
—Truncates a variable at a given position or character
&X = TRUNC(&VAR1, 3)
&Y = TRUNC(&VAR2,'.")
* PFK()
—Provides function key assignment information
8X = PFK(HELP)
&Y = PFK(3)
/* normally results in X = F1 and Y = END */
* LVLINE()
—Provides the line number of the last visible line within a graphic
or dynamic area
&LVLNE = LVLI NE(DYNAREA)

28 ‘ ISPF Panels - Advanced | Session 9764 © 2011 I1BM Corporation

There are many built-in functions available for use in panel procedures. Some of
the main ones are:

*TRANS - to translate values from 1 value to another. Most often used in
menu selection panels (as we saw earlier). The *,*' as the last pair is the
anything-else condition. In the example, if &VARL1 is neither 'Y' or 'N' the value of
VARL is put into VAL.

*TRUNC - truncates a variable. Truncation can either occur at a specified
position, or at a particular character. The remaining data after the truncation point
is stored in the .TRAIL control variable.

*PFK - provides function key information

*LVLINE - provides the line number of the last visible line within a graphic or
dynamic area. This is useful to determine how many lines to scroll (up or down).
(And it takes into account the presence or not of the function key display)

Interactive Program Development Facility (ISPF)

Panel Logic - Functions (New)

« Two new functions added in z/OS 1.5 (ISPF 5.5)
~LENGTH()
*Returns length of variable
&LEN = LENGTH(&VAR1)
~UPPER()

*Translates a variable to uppercase
&UVAR = UPPER(&VAR1)

29 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Two new functions were added in z/OS 1.5 (ISPF 5.5):

*LENGTH - can occur on the right side of an assignment statement to evaluate
the length of a dialog variable. The variable length returned will be the maximum
of the actual length of the variable if it exists and the length specified in the
)FIELD section.

*UPPER - can occur on the right side of an assignment statement and will return
the uppercase value of a variable.
Support added to z/OS 1.2 and above via APAR OW57368 (PTF UA02839).

Interactive Program Development Facility (ISPF)

Panel REXX

=Added in z/OS 1.6 (ISPF 5.6)

=Extend the ISPF panel language

=Like panel exits, but easier

=Handle extra verifications that ISPF doesn't support

« Special date/time formats
« Special range checking
» Checks requiring data base access
« Naming Standards
« Data set existence
 Anything else you want
=Can set message

=Can be inline REXX or a PDS member
=Invoked by *REXX statement

=Can be used in)INIT,)REINIT,)PROC,)ABCINIT, and)JABCPROC
sections

30 ‘ ISPF Panels - Advanced | Session 9764 © 2011 I1BM Corporation

With z/OS 1.6 support was added to allow REXX to be invoked from ISPF panel
procedures. This extended the processing capability in a panel procedure by
making available the many features and functions of REXX. Tasks previously
difficult or impossible to do from a panel procedure are now simple, such as
reading data from a data set or performing mathematical calculations.

While it was possible to use a panel exit to invoke REXX from a panel procedure,
using panel REXX is much simpler. The *REXX statement is used to invoke panel
REXX and identify the ISPF variables to be processed by the REXX. The REXX
can be coded directly into the panel procedure after the *REXX statement or the
name of a member containing the REXX can be specified with the *REXX
statement.

Interactive Program Development Facility (ISPF)

Panel REXX

=Restrictions

* ISPF services are NOT allowed
* REXX code can be interpreted REXX or, if PDS member, compiled
REXX
—Compiled REXX must include initialization call to ISPPRXVP to
make ISPF dialog variables available to REXX, and termination
call to update dialog variables
« Combined lengths of ISPF statements and REXX statements in
)INIT,)REINIT and)PROC cannot exceed 32K
—Use PDS member option to avoid this problem
* REXX code can only access dialog variables specified on the *REXX
statement
* REXX coded within the panel source must be terminated by a
*ENDREXX statement
* You should use REXX RETURN statement instead of the EXIT
statement in interpreted REXX

31 ‘ ISPF Panels - Advanced | Session 9764 © 2011 I1BM Corporation

Some restrictions apply to the processing that can be done in panel REXX:
*ISPF services cannot be called

*Compiled REXX requires calls to module ISPPRXVP to make ISPF dialog
variables available to REXX and to update the variable back in the ISPF variable
pool.

*Coding REXX in the panel procedure could result in error message ISPP321 if
the combined length of panel statements exceeds 32K.

*The REXX can only process the ISPF dialog variables identified on the *REXX
statement.

*The *ENDREXX statement is required to terminate REXX coded directly into a
panel procedure.

oIf EXIT rather than RETURN is used for interpreted REXX, the call to ISPPRXVP
generated by ISPF to update the dialog variables will not be executed. Therefore
updates to these variables from within the REXX will not be ‘seen’ by ISPF.

Interactive Program Development Facility (ISPF)

Panel REXX

= Restrictions . . .
«Variable values must be in character format when passed, and
must remain in character format

«Variables values can be changed

«Variable lengths can NOT be changed (prior to z/OS 1.9)
—For implicitly defined variables that are fields on the panel, the
length of the associated REXX variable is the larger of the length
of the panel field and the length of the variable's value

—For other implicitly defined variables, the variable length is
considered to be the same as the length of its value

-So, if necessary, pad variables to required length before
passing them to the REXX

32 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

*Dialog variables passed to panel REXX must be in character format and must
remain in character format.

*On releases prior to z/OS 1.9, panel REXX cannot change the length of the value
of a dialog variable. This generally required the value of the dialog variable to be
padded to the required length before being passed to panel REXX. After changes
provided with z/OS 1.9, this is no longer necessary.

Interactive Program Development Facility (ISPF)

Panel REXX
=Return Codes
* The exit should return one of the following values:
0 - Operation successful
8 - Panel REXX defined failure
ISPF sets the .MSG control variable and redisplays
the panel
20 or other - Severe error in the exit routine
33 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Dialog variable ZRXRC is provided by ISPF for panel REXX to set a return code.
Dialog variable ZRXMSG is provided by ISPF for panel REXX to set the ID for a
message to be displayed when the panel REXX sets a return code of 8.

Note: It is not necessary to specify ZRXRC or ZRXMSG on the *REXX statement.

Interactive Program Development Facility (ISPF)

Invoking Panel REXX

=Invoked using *REXX statement
*REXX[([*,]val ue,value,...[, (nenber)])]

—Specifies that all the dialog variables defined in the panel) BODY section are to
be passed to the REXX code for processing
« value
—Specifies the names of dialog variables passed to the REXX code for processing
* member
—Specifies the name of a member in the standard search sequences used to load
REXX programs
—Member can contain interpreted REXX or compiled REXX

—Compiled REXX can be either the output generated by the REXX compiler when
using the CEXEC option or a load module generated when link-editing the output
generated by the REXX compiler when using the OBJECT option

34 ‘ ISPF Panels - Advanced | Session 9764 © 2011 I1BM Corporation

The *REXX statement is used to invoke panel REXX. It identifies the names of the
dialog variables to be passed to the panel REXX for processing. A list of variable
names can be specified or if all dialog variables referenced in the)BODY section
may be processed by the panel REXX then just an * (asterisk) can be specified.

The REXX can be coded in the panel procedure immediately after the *REXX
statement. Alternatively if there is a large amount of REXX code or the code is
common amongst a number of panels the name of a member containing the
REXX code can be specified on the *REXX statement.

Interactive Program Development Facility (ISPF)

Panel REXX - Example

) ATTR

% TYPE (PT)

+ TYPE (NT)

TYPE (FP)

_ TYPE (NEF)

I TYPE (NEF) CAPS(ON)

@ AREA(DYNAM C) EXTEND(ON)

) BODY

LR LR LR L L LR Panel REXX -----cc-mcmmmmcnmccecicccneeaans
#Command ===>_MYVAR

¥

#Data set name . . .!DSN +
¥

+@YNAREA @
YINT
8DSN = '
&PADDYNA
&PADDYNA
&PADDYNA
Pad DYNAREA &PADDYNA
to required &PADDYNA
length &PADDYNA
&PADDYNA

' &PADDYNA
' &PADDYNA
' &PADDYNA
' &PADDYNA
' &PADDYNA
' &PADDYNA

&PADDYNA = ' &PADDYNA
&DYNAREA = &PADDYNA
YREINIT

REFRESH(*)

35 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

This and the following page show an example of a panel using panel REXX.

The)BODY section contains some static text and 3 variables (MYVAR, DSN,
DYNAREA), 1 of which (DYNAREA) is a dynamic area.

The)INIT section initializes the DSN and the DYNAREA variables to blanks, and
pads the DYNAREA variable to the length required by the REXX code.

Note: The padding of variable DYNAREA is not required on z/OS 1.9 or later.

Interactive Program Development Facility (ISPF)

Panel REXX — Example . . .

I* REXX */
ADDRESS ' | SPEXEC
) PROC “ Dl SPLAY
&DYNAREA = &PADDYNA [PANEL (PANREXX) "
IF (&SN -= " ") panrc = rc
Define DSNRC ?/ERE &ig gsuf\;vﬁ) Do uiie o< 8
as 2 characters SDSNRG = * 00" SQ?!
long *REXX(* , DSNRC)
DSNRC = LI STDSI (DSN) Rexx Driver
If DSNRC <= 4 Then
Do
DYNAREA = ,
Invoke REXX "Data set nane: ' Left(sysdsnane, 44) || ,
and expose all "Vol ume serial ID ' Left(sysvol une, 44) || ,
)BODY variables "Unit on which volume resides: ' Left(sysunit,44) I
and DSNRC ' Data set organisation: ' Left(sysdsorg, 44) ||
' Record format: ' Left(sysrecfma44) ||
' Logi cal record |ength: ' Left(syslrecl,44) ||
' Bl ock size: ' Left(sysbl ksi ze, 44)
End
Return

* ENDREXX

)EN; F (&SNRC > 4) . MSG = | SRDO28\ Alternatively, you can set the system

variable ZRXMSG in the the REXX code to set
the .MSG control variable

36 ‘ ISPF Panels - Advanced | Session 9764 © 2011 I1BM Corporation

In the)PROC section the VER statement is used to validate the user entered a
correctly formed data set name.

The dialog variable DSNRC is set to a value of "00" to cause the variable to be 2
characters in length.

The Panel REXX is invoked with the *REXX statement, exposing all variables,
including the DSN variable, defined in the)BODY section and the DSNRC
variable which was implicitly defined in the)PROC section.

The REXX code calls the TSO function LISTDSI to determine if the data set
exists, and to get the attributes of the data set returned in the REXX variables
SYSDSNAME, SYSVOLUME, and so on.

The REXX code formats the information returned by LISTDSI into the DYNAREA
variable and uses the REXX RETURN statement to return to ISPF.

The REXX code is terminated by the *ENDREXX statement.

If the REXX code returns a return code > 4, the .MSG control variable is set to
ISRD028 to cause that message to be displayed.

Interactive Program Development Facility (ISPF)

Panel REXX — Example . . .

37 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

This and the following page show an example of invoking our panel. When the
panel is displayed the user enters the name of the data set that will have it's
attributes displayed.

Interactive Program Development Facility (ISPF)

Panel REXX — Example . ..

ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

Shown here is the display of the data set attributes formatted into the dynamic
area by the panel REXX code.

Note: ISPF ships a sample of panel REXX code in the source module ISRVCHIL
in the ISPF REXX exec library (ISP.SISPEXEC). This panel REXX code is
invoked in the)INIT section of the panel ISRVCALP, which is shipped in the ISPF
panel library. This panel REXX code is used to enable color highlighting of the
entries in the trace data set generated by the ISPVCALL utility. ISPVCALL is used
by the ISPF product support team to assist in debugging customer reported
problems.

Interactive Program Development Facility (ISPF)

DTL - Whatisit ?

=DTL stands for Dialog Tag Language
=A markup language based on ISO SGML

» Other examples include:

—BookManager, BookMaster, DCF, HTML

=You use it to define:

« Panels

* Messages

« Command tables

 Keylist mapping tables
=Allows for simplified creation of CUA compliant dialogs
=A Conversion Utility, ISPDTLC, is shipped with ISPF

ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

DTL is the acronym for “Dialog Tag Language”. It is markup language based on
ISO SGML.

ISO - International Standards Organization
SGML - Standard Generalized Markup Language

Other examples of SGML include Bookmanager, Bookmaster, DCF, HTML,

In ISPF you can use DTL to define:
*Panels

*Messages

Command Tables

*Keylists

ISPF ships the conversion utility ISPDTLC to convert the DTL into standard ISPF
panels, messages, command and keylist tables.

Interactive Program Development Facility (ISPF)

References

=|SPF Publications

* SC34-4821 Dialog Developer's Guide and Reference
* SC34-4816 Reference Summary

=Dialog Tag Language

* SC34-4824 Dialog Tag Language Guide and Reference
* S2627 SHARE presentation from Dallas (and Austin)

40 ‘ ISPF Panels - Advanced | Session 9764 © 2011 IBM Corporation

The main reference material to help you develop ISPF panels is the ISPF Dialog
Developer's Guide and Reference
*Chapter 6 is the main reference material, while

*Chapter 4 provides Common User Access (CUA) Guidelines, and
*Chapter 5 provides many guidelines and examples of ISPF panels
*Chapter 7 provides additional information for Help and Tutorial panels

For those wishing to venture into DTL, the Dialog Tag Language Guide will help
you.

